*8-1. Determine the equations of the elastic curve for the beam using the x_{1} and x_{2} coordinates. Specify the slope at A and the maximum deflection. $E I$ is constant.

$$
E I \frac{d^{2} v}{d x^{2}}=M(x)
$$

For $M_{1}(x)=P x_{1}$

$$
\begin{aligned}
& E I \frac{d^{2} v_{1}}{d x_{1}^{2}}=P x_{1} \\
& E I \frac{d v_{1}}{d x_{1}}=\frac{P x_{1}^{2}}{2}+C_{1} \\
& E I v_{1}=\frac{P x_{1}^{2}}{6} C_{1} x_{1}+C_{1}
\end{aligned}
$$

For $M_{1}(x)=P a$

$$
\begin{aligned}
& E I \frac{d^{2} v_{1}}{d x_{1}^{2}}=P a \\
& E I \frac{d v_{1}}{d x_{1}}=P a x_{1}+C_{1} \\
& E I v_{1}=\frac{P a x_{1}^{2}}{2}=C_{3} x_{1}+C_{4}
\end{aligned}
$$

Boundary conditions:

$$
v_{1}=0 \quad \text { at } \quad x=0
$$

From Eq. (2)

$$
C_{2}=0
$$

Due to symmetry:

$$
\frac{d v_{1}}{d x_{1}}=0 \quad \text { at } \quad x_{1}=\frac{L}{2}
$$

From Eq. (3)

$$
\begin{aligned}
0 & =P a \frac{L}{2}+C_{3} \\
C_{3} & =\frac{P a L}{2}
\end{aligned}
$$

Continuity conditions:

$$
\begin{aligned}
& v_{1}=v_{2} \text { at } x_{1}=x_{2}=a \\
& \frac{P a^{3}}{6}+C_{1} a=\frac{P a^{3}}{2}-\frac{P a^{3} L}{2}+C_{4} \\
& C_{1} a \cdot C_{4}=\frac{P a^{3}}{2}-\frac{P a^{3} L}{2} \\
& \frac{d v_{1}}{d x_{1}}=\frac{d v_{2}}{d x_{2}} \text { at } x_{1}=x_{2}=a
\end{aligned}
$$

4)

8-1. Continued

$$
\begin{aligned}
& \frac{P a^{3}}{2}+C_{1}=P a^{3}-\frac{P a L}{2} \\
& C_{1}=\frac{P a^{2}}{2}-\frac{P a L}{2}
\end{aligned}
$$

Substitute C_{1} into Eq. (5)

$$
\begin{aligned}
& C_{a}=\frac{P a^{3}}{6} \\
& \frac{d v_{1}}{d x_{1}}=\frac{P}{2 E I}\left(x_{1}^{2}+a^{2}-a L\right) \\
& \theta_{A}=\left.\frac{d_{v 1}}{d_{x 1}}\right|_{x_{1}=0}=\frac{P a(a-L)}{2 E I} \\
& v_{1}=\frac{P x_{1}}{6 E I}\left[x_{1}^{2}+3 a(a-L)\right] \\
& v_{2}=\frac{P a}{6 E I}+\left(3 x_{2}\left(x_{2}-L\right)+a^{2}\right) \\
& V_{x=1}=\left.V_{2}\right|_{x=\frac{1}{2}}=\frac{P a}{24 E I}\left(4 a^{2}-3 L^{2}\right)
\end{aligned}
$$

Ans.

Ans.

Ans.

Ans.

8-2. The bar is supported by a roller constraint at B, which allows vertical displacement but resists axial load and moment. If the bar is subjected to the loading shown, determine the slope at A and the deflection at C. $E I$ is constant.
$E I \frac{d^{2} v_{1}}{d x_{1}^{2}}=M_{1}=P x_{1}$
$E I \frac{d v_{1}}{d x_{2}}=\frac{P x_{1}^{2}}{2}+C_{1}$
$E I v_{1}=\frac{P x_{1}^{2}}{6}+C_{1} x_{1}+C_{1}$
$E I \frac{d^{2} v_{2}}{d x_{2}}=M_{2}=\frac{P L}{2}$
$E I \frac{d v_{2}}{d x_{2}}=\frac{P L}{2} x_{2}+C_{3}$
$E I v_{2}=\frac{P L}{4} x_{2}^{2}+C_{3} x_{3}+C_{4}$

8-2. Continued

Boundary conditions:
At $x_{1}=0, \quad v_{1}=0$
$0=0+0+C_{2} ; \quad C_{2}=0$
At $x_{2}=0, \frac{d v_{2}}{d x_{2}}=0$
$0+C_{3}=0 ; \quad C_{3}=0$
At $x_{1}=\frac{L}{2}, \quad x_{2}=\frac{L}{2}, \quad v_{1}=v_{2}, \quad \frac{d v_{1}}{d x_{1}}=-\frac{d v_{2}}{d x_{2}}$

$\frac{P\left(\frac{L}{2}\right)^{2}}{6}+C_{1}\left(\frac{L}{2}\right)=\frac{P L\left(\frac{L}{2}\right)^{2}}{4}+C_{4}$
$\frac{P\left(\frac{L}{2}\right)^{2}}{2}+C_{1}=-\frac{P\left(\frac{L}{2}\right)}{2} ; \quad C_{1}=-\frac{3}{8} P L^{3}$
$C_{4}=-\frac{11}{48} P L^{3}$
At $x_{1}=0$
$\frac{d v_{1}}{d x_{1}}=\theta_{A}=-\frac{3}{8} \frac{P L^{2}}{E I}$
At $x_{1}=\frac{L}{2}$
$v_{c}=\frac{P\left(\frac{L}{2}\right)^{3}}{6 E I}-\left(\frac{3}{8} P L^{2}\right)\left(\frac{L}{2}\right)+0$
$v_{c}=\frac{-P L^{3}}{6 E I}$

8-3. Determine the deflection at B of the bar in Prob. 8-2.
$E I \frac{d^{2} v_{1}}{d x_{1}^{2}}=M_{1}=P x_{1}$
$E I \frac{d v_{2}}{d x_{1}}=\frac{P x_{1}^{2}}{2}+C_{1}$
$E I v_{1}=\frac{P x_{1}^{2}}{6}+C_{1} x_{1}+C_{2}$
$E I \frac{d^{2} v_{2}}{d x_{2}}=M_{2}=\frac{P L}{2}$
$E I \frac{d v_{2}}{d x_{2}} \frac{P L}{2} x_{2}+C_{3}$
$E I v_{2}=\frac{P L}{4} x_{2}^{2}+C_{3} x_{2}+C_{4}$

8-3. Continued

Boundary conditions:
At $x_{1}=0, \quad v_{1}=0$
$0=0+0+C_{2} ; \quad C_{2}=0$

At $x_{2}=0, \frac{d v_{2}}{d x_{2}}=0$
$0+C_{3}=0 ; \quad C_{3}=0$

At $x_{1}=\frac{L}{2}, \quad x_{2}=\frac{L}{2}, \quad v_{1}=v_{2}, \quad \frac{d v_{1}}{d x_{1}}=-\frac{d v_{2}}{d x_{2}}$

$\frac{P\left(\frac{L}{2}\right)^{3}}{6}+C_{1}\left(\frac{L}{2}\right)=\frac{P L\left(\frac{L}{2}\right)^{2}}{4}+C_{4}$
$\frac{P\left(\frac{L}{2}\right)^{3}}{2}+C_{1}=-\frac{P\left(\frac{L}{2}\right)}{2} ;$
$C_{1}=-\frac{3}{8} P L^{2}$
$C_{4}=\frac{11}{48} P L^{3}$
At $x_{2}=0$,
$v_{B}=-\frac{11 P L^{3}}{48 E I}$

Ans.

*8-4. Determine the equations of the elastic curve using the coordinates x_{1} and x_{2}, specify the slope and deflection at $B . E I$ is constant.
$E I \frac{d^{2} v}{d x^{2}}=M(x)$

For $M_{1}(x)=-\frac{w}{2} x_{1}^{2}+w a x_{1}-\frac{w a^{2}}{2}$

$$
\begin{aligned}
& E I \frac{d^{2} v_{1}}{d x_{1}^{2}}=-\frac{w}{2} x_{1}^{2}+w a x_{1}-\frac{w a^{2}}{2} \\
& E I \frac{d v_{1}}{d x_{1}}=-\frac{w}{6} x_{1}^{3}+\frac{w a}{2} x_{1}^{2}-\frac{w a^{2}}{2} x_{1}+C_{1}
\end{aligned}
$$

8-4. Continued

$E I v_{1}=-\frac{w}{24} x_{1}^{4}+\frac{w a}{6} x_{1}^{3}-\frac{w a^{2}}{4} x_{1}^{2}+C_{1} x_{1}+C_{2}$
For $M_{2}(x)=0 ; \quad E I \frac{d^{2} v_{2}}{d x_{2}^{3}}=0$
$E I \frac{d v_{2}}{d x_{2}}=C_{3}$
$E I v_{2}=C_{3} x_{2}+C_{4}$
Boundary conditions:
At $x_{1}=0, \frac{d v_{1}}{d x_{1}}=0$
From Eq. (1), $\quad C_{1}=0$
At $x_{1}=0, \quad v_{1}=0$
From Eq. (2): $\quad C_{2}=0$
Continuity conditions:
At $x_{1}=a, \quad x_{2}=a ; \quad \frac{d v_{1}}{d x_{1}}=\frac{d v_{2}}{d x_{2}}$
From Eqs. (1) and (3),

$$
-\frac{w a^{3}}{6}+\frac{w a^{3}}{2}-\frac{w a^{3}}{2}=C_{3} ; \quad C_{3}=-\frac{w a^{3}}{6}
$$

From Eqs. (2) and (4),
At $x_{1}=a, \quad x_{2}=a \quad v_{1}=v_{2}$

$$
-\frac{w a^{4}}{24}+\frac{w a^{4}}{6}-\frac{w a^{4}}{4}=-\frac{w a^{4}}{6}+C_{4} ; \quad C_{4}=\frac{w a^{4}}{24}
$$

The slope, from Eq. (3),
$\theta_{B}=\frac{d v_{2}}{d x_{2}}=\frac{w a^{3}}{6 E I}$
Ans.

The elastic curve:
$v_{1}=\frac{w}{24 E I}\left(-x_{1}^{4}+4 a x_{1}^{3}-6 a^{2} x_{1}^{2}\right)$
$v_{2}=\frac{w a^{3}}{24 E I}\left(-4 x_{2}+a\right)$
$v_{1}=\left.v_{2}\right|_{x_{3}=L}=\frac{w a^{3}}{24 E I}(-4 L+a)$
Ans.

Ans.

Ans.

8-5. Determine the equations of the elastic curve using the coordinates x_{1} and x_{3}, and specify the slope and deflection at point B. $E I$ is constant.
$E I \frac{d^{2} v}{d x_{2}}=M(x)$
For $M_{1}(x)=-\frac{w}{2} x_{1}^{2}+w a x_{1}-\frac{w a^{2}}{2}$
$E I \frac{d^{2} v_{1}}{d x_{1}^{2}}=-\frac{w}{2} x_{1}^{2}+w a x_{1}-\frac{w a^{2}}{2}$
$E I \frac{d v_{1}}{d x_{1}}=-\frac{w}{6} x_{1}^{3}+\frac{w a}{2} x_{1}^{2}-\frac{w a^{2}}{2} x_{1}+C_{1}$
$E I v_{1}=-\frac{w}{24} x_{1}^{4}+\frac{w a}{6} x_{1}^{3}-\frac{w a^{2}}{4} x_{1}^{2}+C_{1} x_{1}+C_{2}$
For $M_{2}(x)=0 ; \quad E I \frac{d^{2} v_{3}}{d x_{3}^{2}}=0$
$E I \frac{d v_{3}}{d x_{3}}=C_{3}$
EI $v_{3}=C_{3} x_{3}+C_{4}$
Boundary conditions:
At $x_{1}=0, \frac{d v_{1}}{d x_{1}}=0$
From Eq. (1),
$0=-0+0-0+C_{1} ; \quad C_{1}=0$
At $x_{1}=0, \quad v_{1}=0$
From Eq. (2),
$0=-0-0-0+0+C_{2} ; \quad C_{2}=0$
Continuity conditions:
At $x_{1}=a, \quad x_{3}=L-a ; \quad \frac{d v_{1}}{d x_{1}}=\frac{d v_{3}}{d x_{3}}$
$-\frac{w a^{3}}{6}+\frac{w a^{3}}{2}-\frac{-w a^{3}}{2}=-C_{3} ; \quad C_{3}=+\frac{w a^{3}}{6}$
At $x_{1}=a, \quad x_{3}=L-a \quad v_{1}=v_{2}$
$-\frac{w a^{4}}{24}+\frac{w a^{4}}{6}-\frac{w a^{4}}{4}=\frac{w a^{3}}{6}(L-a)+C_{4} ; \quad C_{4}=\frac{w a^{4}}{24}-\frac{w a^{3} L}{6}$

The slope
$\frac{d v_{3}}{d x_{3}}=\frac{w a^{3}}{6 E I}$
$\theta_{B}=\left.\frac{d_{v 3}}{d_{x 3}}\right|_{x_{3}=0}=\frac{w a^{3}}{6 E I}$
The elastic curve:
$v_{1}=\frac{w x_{1}^{2}}{24 E I}\left(-x_{1}^{2}+4 a x_{1}-6 a^{2}\right)$
$v_{3}=\frac{w a^{3}}{24 E I}\left(4 x_{3}+a-4 L\right)$
$V_{2}=\left.V_{3}\right|_{x_{3}=0}=\frac{w a^{3}}{24 E I}(a-4 L)$

8-6. Determine the maximum deflection between the supports A and B. $E I$ is constant. Use the method of integration.

Elastic curve and slope:
$E I \frac{d^{2} v}{d x^{2}}=M(x)$
For $M_{1}(x)=\frac{-w x_{1}^{2}}{2}$

$$
\begin{align*}
E I \frac{d^{1} v_{1}}{d x_{1}^{2}} & =\frac{-w x_{1}^{2}}{2} \\
E I \frac{d v_{1}}{d x_{1}} & =\frac{-w x_{1}^{3}}{6}+C_{1} \tag{1}\\
E I v_{1} & =-\frac{w x_{1}^{4}}{24}+C_{1} x_{1}+C_{2} \tag{2}
\end{align*}
$$

For $\quad M_{2}(x)=\frac{-w L x_{2}}{2}$

$$
\begin{align*}
E I \frac{d^{2} v_{2}}{d x_{3}^{2}} & =\frac{-w L x_{2}}{2} \\
E I \frac{d v_{2}}{d x_{2}} & =\frac{-w L x_{2}^{2}}{4}+C_{3} \tag{3}\\
E I v_{2} & =\frac{-w L x_{2}^{\frac{3}{2}}}{412}+C_{3} x_{3}+C_{4} \tag{4}
\end{align*}
$$

Boundary conditions:
$v_{2}=0 \quad$ at $\quad x_{2}=0$
From Eq. (4):
$C_{4}=0$
$v_{2}=0$ at $x_{2}=L$
From Eq. (4):
$0=\frac{-w L^{4}}{12}+C_{3} L$
$C_{3}=\frac{w L^{3}}{12}$
$v_{1}=0 \quad$ at $\quad x_{1}=L$
From Eq. (2):
$0=-\frac{w L^{4}}{24}+C_{1} L+C_{2}$

8-6. Continued

Continuity conditions:
$\frac{d v_{1}}{d x_{1}}=\frac{d v_{2}}{-d x_{2}} \quad$ at $\quad x_{1}=x_{2}=L$
From Eqs. (1) and (3)
$-\frac{w L^{3}}{6}+C_{1}=-\left(-\frac{w L^{3}}{4}+\frac{w L^{3}}{12}\right)$
$C_{1}=\frac{w L^{3}}{3}$
Substitute C_{1} into Eq. (5)
$C_{2}=\frac{7 w L^{4}}{24}$
$\frac{d v_{1}}{d x_{1}}=\frac{w}{6 E I}\left(2 L^{3}-x_{1}^{3}\right)$
$\frac{d v_{2}}{d x_{2}}=\frac{w}{12 E I}\left(L^{3}-3 L x_{2}^{2}\right)$
$\theta_{A}=\left.\frac{d_{v 1}}{d_{x 1}}\right|_{x_{1}={ }_{L}}=-\left.\frac{d v_{2}}{d v_{3}}\right|_{x_{3}=L_{L}}=\frac{w L^{3}}{6 E I}$
$v_{1}=\frac{w}{24 E I}\left(-x_{1}^{4}+8 L^{3} x_{1}-7 L^{4}\right)$
$\left(v_{1}\right)_{\max }=\frac{-7 w L^{4}}{24 E I}\left(x_{1}=0\right)$
The negative sign indicates downward displacement
$v_{2}=\frac{w L}{12 E I}\left(L^{2} x_{2}-x_{2}^{3}\right)$
$\left(v_{2}\right)_{\max }$ occurs when $\frac{d v_{2}}{d x_{2}}=0$
From Eq. (6)
$L^{3}-3 L x_{2}^{2}=0$
$x_{2}=\frac{L}{\sqrt{3}}$
Substitute x_{2} into Eq. (7),
$\left(v_{2}\right)_{\max }=\frac{w L_{4}}{18 \sqrt{3 E I}}$
Ans.

8-7. Determine the elastic curve for the simply supported beam using the x coordinate $0 \leq x \leq L / 2$. Also, determine the slope at A and the maximum deflection of the beam. $E I$ is constant.
$E I \frac{d^{2} v}{d x^{2}}=M(x)$
$E I \frac{d^{2} v}{d x^{2}}=\frac{w_{o} L}{4} x-\frac{w_{o}}{3 L} x^{3}$
$E I \frac{d v}{d x}=\frac{w_{o} L}{8} x^{2}-\frac{w_{o}}{12 L} x^{4}+C_{1}$
$E I v=\frac{w_{o} L}{24} x^{3}-\frac{w_{o}}{60 L} x^{5}+C_{1} x+C_{2}$
Boundary conditions:
Due to symmetry, at $x=\frac{L}{2}, \frac{d v}{d x}=0$
From Eq. (1),
$0=\frac{w_{o} L}{8}\left(\frac{L^{2}}{4}\right)-\frac{w_{o}}{12 L}\left(\frac{L^{4}}{16}\right)+C_{1} ; \quad C_{1}=-\frac{5 w_{o} L^{3}}{192}$
At $x=0, \quad v=0$
From Eq. (2),
$0=0-0+0+C_{2} ; \quad C_{2}=0$
From Eq. (1),
$\frac{d v}{d x}=\frac{w_{o}}{192 E I L}\left(24 L^{2} x^{2}-16 x^{4}-5 L^{4}\right)$
$\theta_{A}=\left.\frac{d_{v}}{d_{x}}\right|_{x=0}=-\frac{5 w_{o} L^{3}}{192 E I}=\frac{5 w_{o} L^{3}}{192 E I}$
From Eq. (2),

$$
\begin{aligned}
& v=\frac{w_{o} x}{960 E I L}\left(40 L^{2} x^{2}-16 x^{4}-25 L^{4}\right) \\
& v_{\max }=\left.v\right|_{x=\frac{L}{3}}=-\frac{w_{o} L^{4}}{120 E I}=\frac{w_{o} L^{4}}{120 E I}
\end{aligned}
$$

Ans.

Ans.

Ans.
*8-8. Determine the equations of the elastic curve using the coordinates x_{1} and x_{2}, and specify the slope at C and displacement at B. $E I$ is constant.

Support Reactions and Elastic Curve: As shown on $\operatorname{FBD}(\mathrm{a})$.
Moment Function: As shown on FBD(c) and (c).
Slope and Elastic Curve:

$$
E I \frac{d^{2} v}{d x^{2}}=M(x)
$$

For $M\left(x_{1}\right)=\operatorname{wax}_{1}-\frac{3 w a^{2}}{2}$,

$$
\begin{align*}
E I \frac{d^{2} v_{1}}{d x_{1}^{2}} & =w a x_{1}-\frac{3 w a^{2}}{2} \\
E I \frac{d v_{1}}{d x_{1}} & =\frac{w a}{2} x_{1}^{2}-\frac{3 w a^{2}}{2} x_{1}+C_{1} \tag{1}\\
E I v_{1} & =\frac{w a}{6} x_{1}^{3}-\frac{3 w a^{2}}{4} x_{1}^{2}+C_{1} x_{1}+C_{2} \tag{2}
\end{align*}
$$

For $M\left(x_{2}\right)=-\frac{w}{2} x_{2}^{2}$,

$$
\begin{align*}
E I \frac{d^{2} v_{2}}{d x_{2}^{2}} & =-\frac{w}{2} x_{2}^{2} \\
E I \frac{d v_{2}}{d x_{2}} & =-\frac{w}{6} x_{2}^{3}+C_{3} \tag{3}\\
E I v_{2} & =\frac{w}{24} x_{2}^{4}+C_{3} x_{2}+C_{4} \tag{4}
\end{align*}
$$

Boundary Conditions:

$\frac{d v_{1}}{d x_{1}}=0$ at $x_{1}=0, \quad$ From Eq. [1], $\quad C_{1}=0$
$v_{1}=0$ at $x_{1}=0 \quad$ From Eq. [2], $\quad C_{2}=0$

Continuity Conditions:

At $x_{1}=a$ and $x_{2}=a, \quad \frac{d v_{1}}{d x_{1}}=-\frac{d v_{2}}{d x_{2}} \quad$ From Eqs. [1] and [3],

$$
\frac{w a^{3}}{2}-\frac{3 w a^{3}}{2}=-\left(-\frac{w a^{3}}{6}+C_{3}\right) \quad C_{3}=\frac{7 w a^{3}}{6}
$$

At $x_{1}=a$ and $x_{2}=a, \quad v_{1}=v_{2} . \quad$ From Eqs. [2] and [4],

$$
\frac{w a^{4}}{6}-\frac{3 w a^{4}}{4}=-\frac{w a^{4}}{24}+\frac{5 w a^{4}}{6}+C_{4} \quad C_{4}=-\frac{41 w a^{4}}{8}
$$

The Slope: Substituting into Eq. [1],

$$
\begin{aligned}
& \frac{d v_{1}}{d x_{1}}=\frac{w a x_{1}}{2 E I}\left(x_{1}-3 a\right) \\
& \theta_{C}=\left.\frac{d v_{2}}{d x_{2}}\right|_{x_{1}=a}=-\frac{w a^{3}}{E I}
\end{aligned}
$$

Ans.

The Elastic Curve: Substituting the values of C_{1}, C_{2}, C_{3}, and C_{4} into Eqs. [2] and [4], respectively

$$
\begin{aligned}
& v_{1}=\frac{w a x_{1}}{12 E I}\left(2 x_{1}^{2}-9 a x_{1}\right) \\
& v_{2}=\frac{w}{24 E I}\left(-x_{2}^{4}+28 a^{3} x_{2}-41 a^{4}\right) \\
& v_{B}=\left.v_{2}\right|_{x_{2}=0}=-\frac{41 w a^{4}}{24 E I}
\end{aligned}
$$

Ans.
Ans.

Ans.

8-9. Determine the equations of the elastic curve using the coordinates x_{1} and x_{3}, and specify the slope at B and deflection at C. $E I$ is constant.

Support Reactions and Elastic Curve: As shown on FBD(a).
Moment Function: As shown on FBD(b) and (c).
Slope and Elastic Curve:

$$
E I \frac{d^{2} v}{d x^{2}}=M(x)
$$

For $M\left(x_{1}\right)=w a x_{1}-\frac{3 w a^{2}}{2}$,

$$
\begin{align*}
E I \frac{d^{2} v_{1}}{d x_{1}^{2}} & =w a x_{1}-\frac{3 w a^{2}}{2} \\
E I \frac{d v_{1}}{d x_{1}} & =\frac{w a}{2} x_{1}^{2}-\frac{3 w a^{2}}{2} x_{1}+C_{1} \tag{1}\\
E I v_{1} & =\frac{w a}{6} x_{1}^{3}-\frac{3 w a^{2}}{4} x_{1}^{2}+C_{1} x_{1}+C_{2} \tag{2}
\end{align*}
$$

For $M\left(x_{3}\right)=2 w a x_{3}-\frac{w}{2} x_{2}^{3}-2 w a^{2}$,

$$
\begin{aligned}
E I \frac{d^{2} v_{3}}{d x_{3}^{2}} & =2 w a x_{3}-\frac{w}{2} x_{3}^{2}-2 w a^{2} \\
E I \frac{d v_{3}}{d x_{3}} & =w a x_{3}^{2}-\frac{w}{6} x_{3}^{3}-2 w a^{2} x_{3}+C_{3} \\
E I v_{3} & =\frac{w a}{3} x_{3}^{3}-\frac{w}{24} x_{3}^{4}-w a^{2} x_{3}^{2}+C_{3} x_{3}+C_{4}
\end{aligned}
$$

Boundary Conditions:

$\frac{d v_{1}}{d x_{1}}=0$ at $x_{1}=0, \quad$ From Eq. [1], $\quad C_{1}=0$
$v_{1}=0$ at $x_{1}=0, \quad$ From Eq. [2], $\quad C_{2}=0$

Continuity Conditions:

At $x_{1}=a$ and $x_{3}=a, \quad \frac{d v_{1}}{d x_{1}}=\frac{d v_{3}}{d x_{3}} \quad$ From Eqs. [1] and [3],

The Slope: Substituting the value of C_{3} into Eq. [3],

$$
\begin{aligned}
& \frac{d v_{3}}{d x_{3}}=\frac{w}{2 E I}\left(6 a x_{3}^{2}-x_{3}^{3}-12 a^{2} x_{3}+a^{3}\right) \\
& \theta_{B}=\left.\frac{d v_{3}}{d x_{3}}\right|_{x_{3}=2 a}=-\frac{7 w a^{3}}{6 E I}
\end{aligned}
$$

Ans.

The Elastic Curve: Substituting the values of C_{1}, C_{2}, C_{3}, and C_{4} into Eqs. [2] and [4], respectively,

$$
\begin{aligned}
& v_{1}=\frac{w a x_{1}}{12 E I}\left(2 x_{1}^{2}-9 a x_{1}\right) \\
& v_{C}=\left.v_{1}\right|_{x_{1}=a}=-\frac{7 w a^{4}}{12 E I} \\
& v_{3}=\frac{w}{24 E I}\left(-x_{3}^{4}+8 a x_{3}^{3}-24 a^{2} x_{3}^{2}+4 a^{3} x_{3}-a^{4}\right)
\end{aligned}
$$

Ans.

Ans.

Ans.

8-10. Determine the slope at B and the maximum displacement of the beam. Use the moment-area theorems. Take $E=29\left(10^{3}\right) \mathrm{ksi}, I=500 \mathrm{in}^{4}$.

Using the $\frac{M}{E I}$ diagram and the elastic curve shown in Fig. a and b, respectively,
Theorem 1 and 2 give

$$
\begin{aligned}
\theta_{B}=\left|\theta_{B / A}\right|= & \frac{1}{2}\left(\frac{90 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(6 \mathrm{ft}) \\
& =\frac{270 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}=\frac{270(144) \mathrm{k} \cdot \mathrm{in}^{2}}{\left[29\left(10^{3}\right) \frac{\mathrm{k}}{\mathrm{in}^{2}}\right]\left(500 \mathrm{in}^{4}\right)}=0.00268 \mathrm{rad} \\
\begin{aligned}
\Delta_{\max }=\Delta_{\mathrm{C}}= & \left|\mathrm{t}_{\mathrm{B} / \mathrm{A}}\right|
\end{aligned} & =\left[\frac{1}{2}\left(\frac{90 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(6 \mathrm{ft})\right]\left[6 \mathrm{ft}+\frac{2}{3}(6 \mathrm{ft})\right] \\
& =\frac{2700 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \\
& =\frac{2700(1728) \mathrm{k} \cdot \mathrm{in}^{3}}{\left[29\left(10^{3}\right) \frac{\mathrm{k}}{\mathrm{in}^{2}}\right]\left(500 \mathrm{in}^{4}\right)} \\
& =0.322 \mathrm{in} \downarrow
\end{aligned}
$$

Ans.

Ans.

(a)

(b)

8-11. Solve Prob. 8-10 using the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. b and c, respectively. Referring to Fig. c,
$+\uparrow \sum F_{y}=0 ;$

$$
\begin{aligned}
& -V_{B}^{\prime}-\frac{1}{2}\left(\frac{90 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(6 \mathrm{ft})=0 \\
& \theta_{B}
\end{aligned}=V_{B}^{\prime}=-\frac{270 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I} .
$$

Referring to Fig. d,

$$
\begin{aligned}
\varsigma+\sum M_{C}=0 ; \quad M_{C}^{\prime} & +\left[\frac{1}{2}\left(\frac{90 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(6 \mathrm{ft})\right]\left[6 \mathrm{ft}+\frac{2}{3}(6 \mathrm{ft})\right]=0 \\
\Delta_{\max } & =\Delta_{C}=M_{C}^{\prime}=-\frac{2700 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \\
& =\frac{2700\left(12^{3}\right) \mathrm{k} \cdot \mathrm{in}^{3}}{\left[29\left(10^{3}\right) \frac{\mathrm{k}}{\left.\mathrm{in}^{2}\right]\left(500 \mathrm{in}^{4}\right)}=0.322 \text { in } \downarrow\right.}
\end{aligned}
$$

Ans.

15 K

(a)

(C)

(d)
*8-12. Determine the slope and displacement at C. $E I$ is constant. Use the moment-area theorems.

Using the $\frac{M}{E I}$ diagram and the elastic curve shown in Fig. a and b, respectively,
Theorem 1 and 2 give
$\theta_{C / A}=\frac{1}{2}\left(-\frac{225 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(45 \mathrm{ft})=-\frac{5062.5 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}=\frac{5062.5 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I} \nabla$
$\left|t_{B / A}\right|=\left[\frac{1}{2}\left(\frac{225 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(30 \mathrm{ft})\right]\left[\frac{1}{3}(30 \mathrm{ft})\right]=\frac{33750 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}$
$\left|t_{C / A}\right|=\left[\frac{1}{2}\left(\frac{225 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(30 \mathrm{ft})\right]\left[15 \mathrm{ft}+\frac{1}{3}(30 \mathrm{ft})\right]+\left[\frac{1}{2}\left(\frac{225 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(15 \mathrm{ft})\right]\left[\frac{2}{3}(15 \mathrm{ft})\right]$

$$
=\frac{101250 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}
$$

Then,

$$
\begin{aligned}
& \Delta^{\prime}=\frac{45}{30}\left(t_{B / A}\right)=\frac{45}{30}\left(\frac{33750 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}\right)=\frac{50625 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \\
& \theta_{A}=\frac{\left|t_{B / A}\right|}{L_{A B}}=\frac{33750 \mathrm{k} \cdot \mathrm{ft}^{3} / E I}{30 \mathrm{ft}}=\frac{1125 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I} \measuredangle \\
&+2 \theta_{C}=\theta_{A}+\theta_{C / A} \\
& \theta_{C}=\frac{-1125 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}+\frac{5062.5 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}=\frac{3937.5 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I} \nabla \\
& \Delta_{C}=\left|t_{C / A}\right|-\Delta^{\prime}=\frac{101250 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}-\frac{50625 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \\
&=\frac{50625 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \downarrow
\end{aligned}
$$

Ans.

Ans.

(a)

8-13. Solve Prob. 8-12 using the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. a and b, respectively. Referring to Fig. c,

$$
\begin{gathered}
C+\sum M_{A}=0 ; \quad B_{y}^{\prime}(30 \mathrm{ft})-\left[\frac{1}{2}\left(\frac{225 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(30 \mathrm{ft})\right](20 \mathrm{ft}) \\
B_{y}^{\prime}=\frac{2250 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}
\end{gathered}
$$

Referring to Fig. d,

$$
\begin{aligned}
+\uparrow \sum F_{y} & =0 ; \quad-V_{C}^{\prime}-\frac{1}{2}\left(\frac{225 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(15 \mathrm{ft})-\frac{2250 \mathrm{k} \cdot \mathrm{ft}}{E I} \\
\theta_{C} & =V_{C}^{\prime}=-\frac{3937.5 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}=\frac{3937.5 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I} \\
C+\sum M_{C} & =0 ; \quad M_{C}^{\prime}+\left[\frac{1}{2}\left(\frac{225 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(15 \mathrm{ft})\right](10 \mathrm{ft})+\left(\frac{2250 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}\right)(15 \mathrm{ft}) \\
\Delta_{C} & =M_{C}^{\prime}=\frac{50625 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}=\frac{50625 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \downarrow
\end{aligned}
$$

Ans.

Ans.

(a)

(b)

$$
\frac{1}{2}\left(\frac{225 k \cdot f t}{E I}\right)(30 \mathrm{ft}) \quad \frac{1}{2}\left(\frac{225 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(15 \mathrm{ft})
$$

(c)

(d)
$\mathbf{8 - 1 4}$. Determine the value of a so that the slope at A is equal to zero. $E I$ is constant. Use the moment-area theorems.

Using the $\frac{M}{E I}$ diagram and the elastic curve shown in Fig. a and b, respectively, Theorem 1 and 2 give

$$
\begin{aligned}
\theta_{A / B} & =\frac{1}{2}\left(\frac{P L}{4 E I}\right)(L)+\frac{1}{2}\left(-\frac{P a}{E I}\right)(a+L) \\
& =\frac{P L^{2}}{8 E I}-\frac{P a^{2}}{2 E I}-\frac{P a L}{2 E I} \\
t_{D / B} & =\left[\frac{1}{2}\left(\frac{P L}{4 E I}\right)(L)\right]\left(\frac{L}{2}\right)+\left[\frac{1}{2}\left(-\frac{P a}{E I}\right)(L)\right]\left(\frac{L}{3}\right) \\
& =\frac{P L^{3}}{16 E I}-\frac{P a L^{2}}{6 E I}
\end{aligned}
$$

Then

$$
\theta_{B}=\frac{t_{D / B}}{L}=\frac{P L^{2}}{16 E I}-\frac{P a L}{6 E I}
$$

Here, it is required that

$$
\begin{gathered}
\theta_{B}=\theta_{A / B} \\
\frac{P L^{2}}{16 E I}-\frac{P a L}{6 E I}=\frac{P L^{2}}{8 E I}-\frac{P a^{2}}{2 E I}-\frac{P a L}{2 E I} \\
24 a^{2}+16 L a-3 L^{2}=0
\end{gathered}
$$

$\frac{p}{2 L}(2 a+3 L)$
$\frac{P}{2 L}(L-2 a)$
$\frac{M}{E I}$

Choose the position root,

$$
a=0.153 L
$$

8-15. Solve Prob. 8-14 using the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. a and b, respectively. Referring to Fig. d,

$$
\zeta+\sum M_{B}=0 ; \quad D_{y}^{\prime}(L)+\left[\frac{1}{2}\left(\frac{P a}{E I}\right)(L)\right]\left(\frac{2}{3} L\right)-\left[\frac{1}{2}\left(\frac{P L}{4 E I}\right)(L)\right]\left(\frac{1}{2}\right)=0
$$

$$
D_{y}^{\prime}=\frac{P L^{2}}{16 E I}-\frac{P a L}{3 E I}
$$

It is required that $V_{A}^{\prime}=\theta_{A}=0$, Referring to Fig. c,

$$
\begin{gathered}
\uparrow+\sum F_{y}=0 ; \quad \frac{P L^{2}}{16 E I}-\frac{P a L}{3 E I}-\frac{P a^{2}}{2 E I}=0 \\
24 a^{2}+16 L a-3 L^{2}=0
\end{gathered}
$$

Choose the position root,

$$
a=0.153 \mathrm{~L}
$$

$\frac{P}{2 L}(2 a+3 L) \quad \frac{P}{2 L}(L-2 a)$

(b)

Ans.

(C)

(d)
*8-16. Determine the value of a so that the displacement at C is equal to zero. $E I$ is constant. Use the moment-area theorems.

Using the $\frac{M}{E I}$ diagram and the elastic curve shown in Fig. a and b, respectively, Theorem 2 gives

$$
\begin{aligned}
t_{D / B} & =\left[\frac{1}{2}\left(\frac{P L}{4 E I}\right)(L)\right]\left(\frac{L}{2}\right)+\left[\frac{1}{2}\left(-\frac{P a}{E I}\right)(L)\right]\left(\frac{L}{3}\right) \\
& =\frac{P L^{3}}{16 E I}-\frac{P a L^{2}}{6 E I} \\
T_{C / B} & =\left[\frac{1}{2}\left(\frac{P L}{4 E I}\right)\left(\frac{L}{2}\right)\right]\left[\frac{1}{3}\left(\frac{L}{2}\right)\right]+\left[\frac{1}{2}\left(-\frac{P a}{2 E I}\right)\left(\frac{L}{2}\right)\right]\left[\frac{1}{3}\left(\frac{L}{2}\right)\right] \\
& =\frac{P L^{3}}{96 E I}-\frac{P a L^{2}}{48 E I}
\end{aligned}
$$

It is required that

$$
\begin{aligned}
t_{C / B} & =\frac{1}{2} t_{D / B} \\
\frac{P L^{3}}{96 E I}-\frac{P a L^{2}}{48 E I} & =\frac{1}{2}\left[\frac{P L^{3}}{16 E I}-\frac{P a L^{2}}{6 E I}\right] \\
a & =\frac{L}{3}
\end{aligned}
$$

$\frac{p}{2 L}(2 a+3 L)$
$\frac{P}{Z L}(L-2 a)$
$\frac{M}{E I}$

(a)

8-17. Solve Prob. 8-16 using the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. a and b, respectively. Referring to Fig. c,

$$
\begin{aligned}
C+\sum M_{D}=0 ; \quad & {\left[\frac{1}{2}\left(\frac{P L}{4 E I}\right)(L)\right]\left(\frac{L}{2}\right)-\left[\frac{1}{2}\left(\frac{P a}{E I}\right)(L)\right]\left(\frac{L}{3}\right)-B_{y}^{\prime}(L)=0 } \\
& -B_{y}^{\prime}=\frac{P L^{2}}{16 E I}-\frac{P a L}{6 E I}
\end{aligned}
$$

Here, it is required that $M_{C}^{\prime}=\Delta_{C}=0$. Referring to Fig. d,

$$
\begin{aligned}
& \varsigma+\sum M_{C}=0 ; {\left[\frac{1}{2}\left(\frac{P L}{4 E I}\right)\left(\frac{L}{2}\right)\right]\left[\frac{1}{3}\left(\frac{L}{2}\right)\right] } \\
&-\left[\frac{1}{2}\left(\frac{P a}{2 E I}\right)\left(\frac{L}{2}\right)\right]\left[\frac{1}{3}\left(\frac{L}{2}\right)\right] \\
&-\left[\frac{P L^{2}}{16 E I}-\frac{P a L}{6 E I}\right]\left(\frac{L}{2}\right)=0 \\
& \frac{P L^{3}}{96 E I}-\frac{P a L^{2}}{48 E I}- \frac{P L^{3}}{32 E I}+\frac{P a L^{2}}{12 E I}=0 \\
& \frac{L}{96}-\frac{a}{48}-\frac{L}{32}+\frac{a}{12}=0 \\
& a=\frac{L}{3}
\end{aligned}
$$

Ans.

(b)

(C)

8-18. Determine the slope and the displacement at C. $E I$ is constant. Use the moment-area theorems.

Using the $\frac{M}{E I}$ diagram and the elastic curve shown in Fig. a and b, respectively, Theorem 1 and 2 give

$$
\begin{aligned}
& t_{B / D}=\left[\frac{1}{2}\left(\frac{P a}{2 E I}\right)(a)\right]\left(\frac{2}{3} a\right)=\frac{P a^{3}}{6 E I} \\
& t_{C / D}=\left[\frac{1}{2}\left(\frac{P a}{2 E I}\right)(a)\right]\left(a+\frac{2}{3} a\right)=\frac{5 P a^{3}}{12 E I} \\
& \theta_{C / D}=\frac{1}{2}\left(\frac{P a}{2 E I}\right)(a)=\frac{P a^{2}}{4 E I}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \theta_{C}=\theta_{C / D}=\frac{P a^{2}}{4 E I} \\
& \Delta_{C}=t_{C / D}-t_{B / D}=\frac{5 P a^{3}}{12 E I}-\frac{P a^{3}}{6 E I}=\frac{P a^{3}}{4 E I}
\end{aligned}
$$

Ans.

Ans.

(a)

(b) exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

8-19. Solve Prob. 8-18 using the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. a and b, respectively.
Referring to Fig. c,

$$
C+\sum M_{A}=0 ; \quad\left[\frac{1}{2}\left(\frac{P a}{2 E I}\right)(2 a)\right](a)-B_{y}^{\prime}(2 a)=0 \quad B_{y}^{\prime}=\frac{P a^{2}}{4 E I}
$$

Referring to Fig. d

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad \frac{P a^{2}}{4 E I}-V_{C}^{\prime}=0 \quad \theta_{C}=V_{C}^{\prime}=\frac{P a^{2}}{4 E I} \\
& C+\sum M_{C}=0 ; \quad M_{C}^{\prime}-\frac{P a^{2}}{4 E I}(a)=0 \quad \Delta_{C}=M_{C}^{\prime}=\frac{P a^{3}}{4 E I}
\end{aligned}
$$

Ans.

Ans.

(a)

*8-20. Determine the slope and the displacement at the end C of the beam. $E=200 \mathrm{GPa}, I=70\left(10^{6}\right) \mathrm{mm}^{4}$. Use the moment-area theorems.

Using the $\frac{M}{E I}$ diagram and the elastic curve shown in Fig. a and b, respectively, Theorem 1 and 2 give

$$
\begin{aligned}
\theta_{C / A}= & \frac{1}{2}\left(\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(6 \mathrm{~m})+\frac{1}{2}\left(-\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(9 \mathrm{~m}) \\
= & -\frac{18 \mathrm{kN} \cdot \mathrm{~m}}{E I}=\frac{18 \mathrm{kN} \cdot \mathrm{~m}}{E I} \downarrow \\
t_{B / A}= & {\left[\frac{1}{2}\left(\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(6 \mathrm{~m})\right](3 \mathrm{~m})+\left[\frac{1}{2}\left(-\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(6 \mathrm{~m})\right]\left[\frac{1}{3}(6 \mathrm{~m})\right] } \\
= & \frac{36 \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I} \\
t_{C / A}= & {\left[\frac{1}{2}\left(\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(6 \mathrm{~m})\right](6 \mathrm{~m})+\left[\frac{1}{2}\left(-\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(6 \mathrm{~m})\right]\left[3 \mathrm{~m}+\frac{1}{3}(6 \mathrm{~m})\right] } \\
& +\left[\frac{1}{2}\left(-\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(3 \mathrm{~m})\right]\left[\frac{2}{3}(3 \mathrm{~m})\right] \\
= & 0
\end{aligned}
$$

Then
$\theta_{A}=\frac{t_{B / A}}{L_{A B}}=\frac{36 \mathrm{kN} \cdot \mathrm{m}^{3} / E I}{6 \mathrm{~m}}=\frac{6 \mathrm{kN} \cdot \mathrm{m}^{2}}{E I} \nabla$
$\Delta^{\prime}=\frac{9}{6} t_{B / A}=\frac{9}{6}\left(\frac{36 \mathrm{kN} \cdot \mathrm{m}^{3}}{E I}\right)=\frac{54 \mathrm{kN} \cdot \mathrm{m}^{3}}{E I}$
$+2 \theta_{C}=\theta_{A}+\theta_{C / A}=\frac{6 \mathrm{kN} \cdot \mathrm{m}^{2}}{E I}+\frac{18 \mathrm{kN} \cdot \mathrm{m}^{2}}{E I}$
$=\frac{24 \mathrm{kN} \cdot \mathrm{m}^{2}}{E I}=\frac{24\left(10^{3}\right) \mathrm{N} \cdot \mathrm{m}^{2}}{\left[200\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right]\left[70\left(10^{-6}\right) \mathrm{m}^{4}\right]}=0.00171 \mathrm{rad} \quad \mp \quad$ Ans.
$\Delta_{C}=\Delta^{\prime}-t_{C / A}=\frac{54 \mathrm{kN} \cdot \mathrm{m}^{3}}{E I}-0$
$=\frac{54 \mathrm{kN} \cdot \mathrm{m}^{3}}{E I}=\frac{54\left(10^{3}\right) \mathrm{N} \cdot \mathrm{m}^{3}}{\left[200\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right]\left[70\left(10^{-6}\right) \mathrm{m}^{4}\right]}=0.00386 \mathrm{~m}$
$=3.86 \mathrm{~mm} \downarrow$ Ans.

8-21. Solve Prob. 8-20 using the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. a and b, respectively.
Referring to Fig. c

$$
\begin{aligned}
& \varsigma+\sum M_{A}=0 ; \quad B_{y}^{\prime}(6 \mathrm{~m})+ {\left[\frac{1}{2}\left(\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(6 \mathrm{~m})\right](3 \mathrm{~m}) } \\
&-\left[\frac{1}{2}\left(\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(6 \mathrm{~m})\right]\left[\frac{2}{3}(6 \mathrm{~m})\right]=0 \\
& B_{y}^{\prime}=\frac{6 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I}
\end{aligned}
$$

Referring to Fig. d,

$$
\begin{gathered}
C+\sum F y=0 ; \quad-V_{C}^{\prime}-\frac{6 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I}-\frac{1}{2}\left(\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(3 \mathrm{~m})=0 \\
\theta_{C}=V_{C}^{\prime}=-\frac{24 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I}=\frac{24\left(10^{3}\right) \mathrm{N} \cdot \mathrm{~m}^{2}}{\left[\left(200\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right)\right]\left[\left(70\left(10^{-6}\right) \mathrm{m}^{4}\right]\right.} \\
=0.00171 \mathrm{rad} \downarrow \\
C+\sum M_{C}=0 ; \quad M_{C}^{\prime}+\left[\frac{1}{2}\left(\frac{12 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I}\right)(3 \mathrm{~m})\right]\left[\frac{2}{3}(3 \mathrm{~m})\right] \\
+\left(\frac{6 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I}\right)(3 \mathrm{~m})=0 \\
\text { Ans. } \\
\Delta_{C}=M_{C}^{\prime}=-\frac{54 \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I}=\frac{54\left(10^{3}\right) \mathrm{N} \cdot \mathrm{~m}^{3}}{\left[200\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right]\left[70\left(10^{-6}\right) \mathrm{m}^{4}\right]} \\
=0.00386 \mathrm{~m}=3.86 \mathrm{~mm} \downarrow \text { Ans. }
\end{gathered}
$$

(c)

(d)
(a)

8-22. At what distance a should the bearing supports at A and B be placed so that the displacement at the center of the shaft is equal to the deflection at its ends? The bearings exert only vertical reactions on the shaft. $E I$ is constant. Use the moment-area theorems.

Using the $\frac{M}{E I}$ diagram and the elastic curve shown in Fig. a and b, respectively.
Theorem 2 gives

$$
\begin{aligned}
t_{B / C} & =\left(-\frac{P a}{E I}\right)\left(\frac{L-2 a}{2}\right)\left(\frac{L-2 a}{4}\right)=-\frac{P a}{8 E I}(L-2 a)^{2} \\
t_{D / C} & =\left(-\frac{P a}{E I}\right)\left(\frac{L-2 a}{2}\right)\left(a+\frac{L-2 a}{4}\right)+\frac{1}{2}\left(-\frac{P a}{E I}\right)(a)\left(\frac{2}{3} a\right) \\
& =-\left[\frac{P a}{8 E I}\left(L^{2}-4 a^{2}\right)+\frac{P a^{3}}{3 E I}\right]
\end{aligned}
$$

It is required that

$$
\begin{gathered}
t_{D / C}=2 t_{B / C} \\
\frac{P a}{8 E I}\left(L^{2}-4 a^{2}\right)+\frac{P a^{3}}{3 E I}=2\left[\frac{P a}{8 E I}-(L-2 a)^{2}\right] \\
\frac{7 P a^{3}}{6 E I}-\frac{P a^{2} L}{E I}+\frac{P a L^{2}}{8 E I}=0 \\
56 a^{2}-48 L a+6 L^{2}=0
\end{gathered}
$$

Choose

$$
a=0.152 L
$$

Ans.

8-23. Solve Prob. 8-22 using the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. a and b, respectively. Referring to Fig. c,

$$
\begin{gathered}
C+\sum M_{A}=0 ; \quad B_{\mathrm{y}}^{\prime}(L-2 a)-\left[\frac{P a}{E I}(L-2 a)\right]\left(\frac{L-2 a}{2}\right)=0 \\
B_{y}^{\prime}=\frac{P a}{2 E I}(L-2 a)
\end{gathered}
$$

Referring to Fig. d,
$M_{D}^{\prime}+\frac{P a}{2 E I}(L-2 a)(a)+\left[\frac{1}{2}\left(\frac{P a}{E I}\right)(a)\right]\left(\frac{2}{3} a\right)=0$
$\Delta_{D}=M_{D}^{\prime}=-\left[\frac{P a^{2}}{2 E I}(L-2 a)+\frac{P a^{3}}{3 E I}\right]$
Referring to Fig.e,
$\frac{P a}{2 E I}(L-2 a)\left(\frac{L-2 a}{2}\right)-\frac{P a}{E I}\left(\frac{L-2 a}{2}\right)\left(\frac{L-2 a}{4}\right)-M_{C}^{\prime}=0$
$\Delta_{C}=M_{C}^{\prime}=\frac{P a}{8 E I}(L-2 a)^{2}$
It is required that

$$
\begin{gathered}
\left|\Delta_{D}\right|=\Delta_{C} \\
\frac{P a^{2}}{2 E I}(L-2 a)+\frac{P a^{3}}{3 E I}=\frac{P a}{8 E I}(L-2 a)^{2} \\
\frac{7 P a^{3}}{6 E I}-\frac{P a^{2} L}{E I}+\frac{P a L^{2}}{8 E I}=0 \\
56 a^{2}-48 L a+6 L^{2}=0
\end{gathered}
$$

(a)

Choose

$$
a=0.152 L
$$

*8-24. Determine the displacement at C and the slope at B. $E I$ is constant. Use the moment-area theorems.

Using the $\frac{M}{E I}$ diagram and elastic curve shown in Fig. a and b, respectively,
Theorem 1 and 2 give

$$
\begin{aligned}
\theta_{B / D} & =\left(-\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(1.5 \mathrm{~m})=-\frac{18 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I} \\
t_{B / D} & =\left[\left(-\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(1.5 \mathrm{~m})\right]\left[\frac{1}{2}(1.5 \mathrm{~m})\right]=\frac{13.5 \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I} \\
t_{C / D} & =\left[\left(-\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(1.5 \mathrm{~m})\right]\left[\frac{1}{2}(1.5 \mathrm{~m})+3 \mathrm{~m}\right]+\left[\frac{1}{2}\left(-\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(3 \mathrm{~m})\right]\left[\frac{2}{3}(3 \mathrm{~m})\right] \\
& =\frac{103.5 \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \theta_{B}=\left|\theta_{B / D}\right|=\frac{18 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I} \nabla \\
& \begin{aligned}
\Delta_{C}=\left|t_{C / D}\right|-\left|t_{B / D}\right| & =\frac{103.5 \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I}-\frac{13.5 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I} \\
& =\frac{90 \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I} \downarrow
\end{aligned}
\end{aligned}
$$

Ans.

Ans.

(b)

8-25. Solve Prob. 8-24 using the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. a and b, respectively.
Referring to Fig. c,

$$
\begin{gathered}
\zeta+\sum M_{A}=0 ; \quad B_{y}^{\prime}(3 \mathrm{~m})-\left(\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(3 \mathrm{~m})(1.5 \mathrm{~m})=0 \\
B_{y}^{\prime}=\theta_{B}=\frac{18 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I} \nabla
\end{gathered}
$$

Ans.

Referring to Fig.d,

$$
\begin{aligned}
& \zeta+\sum M_{C}=0 ; \quad M_{C}^{\prime}+\left(\frac{18 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I}\right)(3 \mathrm{~m})+\left[\frac{1}{2}\left(\frac{12 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(3 \mathrm{~m})\right]\left[\frac{2}{3}(3 \mathrm{~m})\right]=0 \\
& \Delta_{C}=M_{C}^{\prime}=-\frac{90 \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I}=\frac{90 \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I} \downarrow
\end{aligned}
$$

(a)

(C)

(d)

8-26. Determine the displacement at C and the slope at B. $E I$ is constant. Use the moment-area theorems.

Using the $\frac{M}{E I}$ diagram and elastic curve shown in Fig. a and b, respectively,
Theorem 1 and 2 give

$$
\begin{aligned}
\theta_{B / C} & =\frac{1}{2}\left(\frac{P a}{E I}\right)(a)+\left(\frac{P a}{E I}\right)(a)+\frac{1}{2}\left(\frac{P a}{2 E I}\right)(a)=\frac{7 P a^{2}}{4 E I} \\
t_{B / C} & =\left[\frac{1}{2}\left(\frac{P a}{E I}\right)(a)\right]\left(\frac{2}{3} a\right)+\left[\frac{P a}{E I}(a)\right]\left(a+\frac{1}{2} a\right)+\left[\frac{1}{2}\left(\frac{P a}{2 E I}\right)(a)\right]\left(a+\frac{2}{3} a\right) \\
& =\frac{9 P a^{3}}{4 E I}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \theta_{B}=\theta_{B / C}=\frac{7 P a^{2}}{4 E I} \\
& A_{C}=t_{B / C}=\frac{9 P a^{3}}{4 E I} \downarrow
\end{aligned}
$$

Ans.

Ans.

(b)

8-27. Determine the displacement at C and the slope at B. $E I$ is constant. Use the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. a and b, respectively. Referring to Fig. c,

$$
\begin{aligned}
C+\sum M_{A}=0 ; \quad & {\left[\frac{1}{2}\left(\frac{P a}{E I}\right)(a)\right]\left(\frac{2}{3} a\right)+\left[\frac{1}{2}\left(\frac{P a}{2 E I}\right)(a)\right]\left(\frac{10}{3} a\right) } \\
& +\left[\left(\frac{P a}{E I}\right)(2 a)+\frac{1}{2}\left(\frac{P a}{2 E I}\right)(2 a)\right](2 a) \\
-B_{y}^{\prime}=(4 a)= & 0
\end{aligned}
$$

$$
\theta_{B}=B_{y}^{\prime}=\frac{7 P a^{2}}{4 E I}
$$

Referring to Fig. d,

$$
\begin{aligned}
& \zeta+\sum M_{C}=0 ; {\left[\frac{1}{2}\left(\frac{P a}{2 E I}\right)(a)\right]\left(\frac{4}{3} a\right)+\left[\left(\frac{P a}{E I}\right)(a)\right]\left(\frac{a}{2}\right) } \\
&+\left[\frac{1}{2}\left(\frac{P a}{2 E I}\right)(a)\right]\left(\frac{a}{3}\right)-\frac{7 P a^{2}}{4 E I}(2 a) \\
&-M_{C}^{\prime}=0 \\
& \Delta_{C}=M_{C}^{\prime}=-\frac{9 P a^{3}}{4 E I}=\frac{9 P a^{3}}{4 E I} \quad \downarrow
\end{aligned}
$$

(a)

(b)

Ans.

*8-28. Determine the force \mathbf{F} at the end of the beam C so that the displacement at C is zero. $E I$ is constant. Use the moment-area theorems.

Using the $\frac{M}{E I}$ diagram and elastic curve shown in Fig. a and b, respectively,
Theorem 2 gives

$$
\begin{aligned}
t_{B / A}= & {\left[\frac{1}{2}\left(\frac{P a}{2 E I}\right)(2 a)\right](a)+\left[\frac{1}{2}\left(-\frac{F a}{E I}\right)(2 a)\right]\left[\frac{1}{3}(2 a)\right]=\frac{P a^{3}}{2 E I}-\frac{2 F a^{3}}{3 E I} } \\
t_{C / A}= & {\left[\frac{1}{2}\left(\frac{P a}{2 E I}\right)(2 a)\right](2 a)+\left[\frac{1}{2}\left(-\frac{F a}{E I}\right)(2 a)\right]\left[\frac{1}{3}(2 a)+a\right] } \\
& +\left[\frac{1}{2}\left(-\frac{F a}{E I}\right)(a)\right]\left[\frac{2}{3}(a)\right] \\
= & \frac{P a^{3}}{2 E I}-\frac{2 F a^{3}}{3 E I}
\end{aligned}
$$

It is required that

$$
\begin{aligned}
t_{C / A} & =\frac{3}{2} t_{B / A} \\
\frac{P a^{3}}{E I}-\frac{2 F a^{3}}{E I} & =\frac{3}{2}\left[\frac{P a^{3}}{2 E I}-\frac{2 F a^{3}}{3 E I}\right] \\
F & =\frac{P}{4}
\end{aligned}
$$

Ans.

(b)
(a)

8-29. Determine the force \mathbf{F} at the end of the beam C so that the displacement at C is zero. $E I$ is constant. Use the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. a and b, respectively. Referring to Fig. c,

$$
\begin{gathered}
\varsigma+\sum M_{A}=0 ;\left[\frac{1}{2}\left(\frac{P a}{2 E I}\right)(2 a)\right](a)-\left[\frac{1}{2}\left(\frac{F a}{E I}\right)(2 a)\right]\left[\frac{2}{3}(2 a)\right]-B_{y}^{\prime}(2 a)=0 \\
B_{y}^{\prime}=\frac{P a^{2}}{4 E I}-\frac{2 F a^{2}}{3 E I}
\end{gathered}
$$

Here, it is required that $\Delta_{C}=M_{C}^{\prime}=0$. Referring to Fig. d,

$$
\varsigma+\sum M_{C}=0 ; \quad\left[\frac{1}{2}\left(\frac{F a}{E I}\right)(a)\right]\left[\frac{2}{3}(a)\right]-\left(\frac{P a^{2}}{4 E I}-\frac{2 F a^{2}}{3 E I}\right)(a)=0
$$

$$
F=\frac{P}{4}
$$

(b)

(a)

(d)

8-30. Determine the slope at B and the displacement at C. $E I$ is constant. Use the moment-area theorems.

Using the $\frac{M}{E I}$ diagram and elastic curve shown in Fig. a and b, Theorem 1 and 2 give

$$
\begin{aligned}
& \theta_{B / A}=\frac{1}{2}\left(-\frac{P a}{E I}\right)(a)=-\frac{P a^{2}}{2 E I}=\frac{P a^{2}}{2 E I} \\
& t_{B / A}=\left[\frac{1}{2}\left(-\frac{P a}{E I}\right)(a)\right]\left[\frac{1}{3}(a)\right]=-\frac{P a^{3}}{6 E I} \\
& t_{C / A}=\left[\frac{1}{2}\left(-\frac{P a}{E I}\right)(2 a)\right](a)=-\frac{P a^{3}}{E I}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \theta_{A}=\frac{\left|t_{B / A}\right|}{L_{A B}}=\frac{P a^{3} / 6 E I}{2 a}=\frac{P a^{2}}{12 E I} \\
& \Delta^{\prime}=\frac{3}{2}\left|t_{B / A}\right|=\frac{3}{2}\left(\frac{P a^{3}}{6 E I}\right)=\frac{P a^{3}}{4 E I} \\
& \theta_{B}=\theta_{A}+\theta_{B / A} \\
& C+\theta_{B}=-\frac{P a^{2}}{12 E I}+\frac{P a^{2}}{2 E I}=\frac{5 P a^{2}}{12 E I} \\
& \Delta_{C}=\left|t_{C / A}\right|-\Delta^{\prime}=\frac{P a^{3}}{E I}-\frac{P a^{3}}{4 E I}=\frac{3 P a^{3}}{4 E I} \\
& \downarrow
\end{aligned}
$$

Ans.
(a)
$\tan A$
(b)

8-31. Determine the slope at B and the displacement at C. $E I$ is constant. Use the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. c and d, respectively.
Referring to Fig. d,

$$
\begin{gathered}
C+\sum M_{A}=0 ; \\
{\left[\frac{1}{2}\left(\frac{P a}{E I}\right)(a)\right]\left(a+\frac{2}{3} a\right)-B_{y}^{\prime}(2 a)=0} \\
\theta_{B}=B_{y}^{\prime}=\frac{5 P a^{2}}{12 E I}
\end{gathered}
$$

Ans.

Referring to Fig. c,

$$
C+\sum M_{C}=0 ; \quad-M_{C}^{\prime}-\left[\frac{1}{2}\left(\frac{P a}{E I}\right)(a)\right]\left(\frac{2}{3} a\right)-\left(\frac{5 P a^{2}}{12 E I}\right)(a)=0
$$

$$
\Delta_{C}=M_{C}^{\prime}=-\frac{3 P a^{3}}{4 E I}=\frac{3 P a^{3}}{4 E I} \downarrow
$$

Ans.

*8-32. Determine the maximum displacement and the slope at A. $E I$ is constant. Use the moment-area theorems.

Using the $\frac{M}{E I}$ diagram and the elastic curve shown in Fig. a and b, respectively,
Theorem 1 and 2 give
$\theta_{D / A}=\frac{1}{2}\left(\frac{M_{0}}{E I L} x\right)(x)=\frac{M_{0}}{2 E I L} x^{2} \quad \measuredangle$
$t_{B / A}=\left[\frac{1}{2}\left(\frac{M_{0}}{2 E I}\right)\left(\frac{L}{2}\right)\right]\left[\frac{1}{3}\left(\frac{L}{2}\right)\right]=\frac{M_{0} L^{2}}{48 E I}$

Then,

$$
\theta_{A}=\frac{\left|t_{B / A}\right|}{L_{A B}}=\frac{M_{0} L^{2} / 48 E I}{L / 2}=\frac{M_{0} L}{24 E I}
$$

Ans.

Here $\theta_{D}=0$. Thus,

$$
\begin{gathered}
\theta_{D}=\theta_{A}+\theta_{D / A} \\
C+0=-\frac{M_{0} L}{24 E I}+\frac{M_{0}}{2 E I L} x^{2} \quad x=\frac{L}{\sqrt{12}}=0.2887 L \\
\Delta_{\max }=\Delta_{D}=t_{B / D}= \\
{\left[\frac{1}{2}\left(\frac{0.2113 M_{0}}{E I}\right)(0.2113 L)\right]\left[\frac{1}{3}(0.2113 L)\right]} \\
\\
\quad+\left[\left(\frac{0.2887 M_{0}}{E I}\right)(0.2113 L)\right]\left[\frac{1}{2}(0.2113 L)\right] \\
= \\
=\frac{0.00802 M_{0} L^{2}}{E I} \downarrow
\end{gathered}
$$

Ans.

(b)

8-33. Determine the maximum displacement at B and the slope at A. $E I$ is constant. Use the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. a and b, respectively. Referring to Fig. c

$$
\begin{gathered}
\varsigma+\sum M_{B}=0 ; \quad A_{y}^{\prime}(L)-\left[\frac{1}{2}\left(\frac{M_{0}}{2 E I}\right)\left(\frac{L}{2}\right)\right]\left(\frac{L}{3}\right)=0 \\
A_{y}^{\prime}=\theta_{A}=\frac{M_{0} L}{24 E I}
\end{gathered}
$$

Here it is required that $\theta_{D}=V_{D}^{\prime}=0$. Referring to Fig. d,

$$
\begin{gathered}
\uparrow \sum F_{y}=0 ; \quad \frac{1}{2}\left(\frac{M_{0}}{E I L} x\right)(x)-\frac{M_{0} L}{24 E I}=0 \\
x=\frac{L}{\sqrt{12}} \\
\left.\begin{array}{c}
C+\sum M_{D}=0 ; \quad M_{D}^{\prime}+\left(\frac{M_{0} L}{24 E I}\right)\left(\frac{L}{\sqrt{12}}\right) \\
\\
-\frac{1}{2}\left(\frac{M_{0}}{E I L}\right)\left(\frac{L}{\sqrt{12}}\right)\left(\frac{L}{\sqrt{12}}\right)\left[\frac{1}{3}\left(\frac{L}{\sqrt{12}}\right)\right]=0 \\
\Delta_{\max }=\Delta_{D}=M_{D}^{\prime}=-\frac{0.00802 M_{0} L^{2}}{E I} \\
=\frac{0.00802 M_{0} L^{2}}{E I}
\end{array}\right]
\end{gathered}
$$

Ans.

(a)

Ans.

(b)

(C)

8-34. Determine the slope and displacement at C. $E I$ is constant. Use the moment-area theorems.

Using the $\frac{M}{E I}$ diagram and the elastic curve shown in Fig. a and b, respectively,
Theorem 1 and 2 give
$\theta_{C}=\left|\theta_{C / A}\right|=\frac{1}{2}\left(\frac{P a}{E I}\right)(a)+\left(\frac{2 P a}{E I}\right)(a)+\frac{1}{2}\left(\frac{P a}{E I}\right)(a)=\frac{3 P a^{2}}{E I}$
$\Delta_{C}=\left|t_{C / A}\right|=\left[\frac{1}{2}\left(\frac{P a}{E I}\right)(a)\right]\left(a+\frac{2}{3} a\right)+\left[\left(\frac{2 P a}{E I}\right)(a)\right]\left(a+\frac{a}{2}\right)$
$+\left[\frac{1}{2}\left(\frac{P a}{E I}\right)(a)\right]\left(\frac{2}{3} a\right)=0$
$=\frac{25 P a^{3}}{6 E I} \downarrow$
Ans.

Ans.

(a)

(b)

8-35. Determine the slope and displacement at C. $E I$ is constant. Use the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. a and b, respectively. Referring to Fig. c,

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad-V_{C}^{\prime}-\frac{1}{2}\left(\frac{P a}{E I}\right)(a)-\left(\frac{2 P a}{E I}\right)(a)-\frac{1}{2}\left(\frac{P a}{E I}\right)(a)=0 \\
\theta_{C}
\end{gathered}=V_{C}^{\prime}=-\frac{3 P a^{2}}{E I}=\frac{3 P a^{2}}{E I} \mp \quad \begin{aligned}
& C+\sum M_{C}=0 ; M_{C}^{\prime}+\left[\frac{1}{2}\left(\frac{P a}{E I}\right)(a)\right]\left(\frac{2}{3} a\right)+\left[\left(\frac{2 P a}{E I}\right)(a)\right]\left(a+\frac{a}{2}\right) \\
&+\left[\frac{1}{2}\left(\frac{P a}{E I}\right)(a)\right]\left(a+\frac{2}{3} a\right)=0 \\
& \Delta_{C}=M_{C}^{\prime}=-\frac{25 P a^{3}}{6 E I}=\frac{25 P a^{3}}{6 E I} \quad \downarrow
\end{aligned}
$$

Ans.

Ans.

$\frac{M}{E I}$

(a)

(b)

(c)
*8-36. Determine the displacement at C. Assume A is a fixed support, B is a pin, and D is a roller. $E I$ is constant. Use the moment-area theorems.

Using the $\frac{M}{E I}$ diagram and the elastic curve shown in Fig. a and b, respectively,
Theorem 1 and 2 give
$\Delta_{B}=\left|t_{B / A}\right|=\left[\frac{1}{2}\left(\frac{37.5 \mathrm{kN} \cdot \mathrm{m}}{E I}\right)(3 \mathrm{~m})\right]\left[\frac{2}{3}(3 \mathrm{~m})\right]=\frac{112.5 \mathrm{kN} \cdot \mathrm{m}^{3}}{E I} \downarrow$
$t_{C / D}=\left[\frac{1}{2}\left(\frac{37.5 \mathrm{kN} \cdot \mathrm{m}}{E I}\right)(3 \mathrm{~m})\right]\left[\frac{1}{3}(3 \mathrm{~m})\right]=\frac{56.25 \mathrm{kN} \cdot \mathrm{m}^{3}}{E I}$
$t_{B / D}=\left[\frac{1}{2}\left(\frac{37.5 \mathrm{kN} \cdot \mathrm{m}}{E I}\right)(6 \mathrm{~m})\right](3 \mathrm{~m})=\frac{337.5 \mathrm{kN} \cdot \mathrm{m}^{3}}{E I}$

Then
$\theta_{D}=\frac{\Delta_{B}+t_{B / D}}{L_{B / D}}=\frac{112.5 \mathrm{kN} \cdot \mathrm{m}^{3} / E I+337.5 \mathrm{kN} \cdot \mathrm{m}^{3} / E I}{6 \mathrm{~m}}=\frac{75 \mathrm{kN} \cdot \mathrm{m}^{2}}{E I} \quad \nabla$ Ans.

$$
\Delta_{C}+t_{C / D}=\frac{1}{2}\left(\Delta_{B}+t_{B / D}\right)
$$

$\Delta_{C}+\frac{56.25 \mathrm{kN} \cdot \mathrm{m}^{3}}{E I}=\frac{1}{2}\left(\frac{112.5 \mathrm{kN} \cdot \mathrm{m}^{3}}{E I}+\frac{337.5 \mathrm{kN} \cdot \mathrm{m}^{3}}{E I}\right)$
$\Delta_{C}=\frac{169 \mathrm{kN} \cdot \mathrm{m}^{3}}{E I} \downarrow$
Ans.

(a)

(b)

8-37. Determine the displacement at C. Assume A is a fixed support, B is a pin, and D is a roller. $E I$ is constant. Use the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. a and b, respectively. Referring to Fig. c,

$$
\begin{aligned}
C+\sum M_{B}=0 ; & {\left[\frac{1}{2}\left(\frac{37.5 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(6 \mathrm{~m})\right](3 \mathrm{~m}) } \\
& +\left[\frac{1}{2}\left(\frac{37.5 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(3 \mathrm{~m})\right](2 \mathrm{~m})-\mathrm{D}_{y}^{\prime}(6 \mathrm{~m})=0 \\
\theta_{D}=D_{y}^{\prime} & =\frac{75 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I} \square
\end{aligned}
$$

Referring to Fig. d,

$$
\begin{aligned}
\varsigma+\sum M_{C}=0 ; & {\left[\frac{1}{2}\left(\frac{37.5 \mathrm{kN} \cdot \mathrm{~m}}{E I}\right)(3 \mathrm{~m})\right](1 \mathrm{~m}) } \\
& -\left(\frac{75 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I}\right)(3 \mathrm{~m})-M_{C}^{\prime}=0 \\
& \Delta_{C}=-\frac{168.75 \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I}=\frac{168.75 \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I} \downarrow
\end{aligned}
$$

(a)

Ans.

(b)

Ans.

(c)

8-38. Determine the displacement at D and the slope at D. Assume A is a fixed support, B is a pin, and C is a roller. Use the moment-area theorems.

Using the $\frac{M}{E I}$ diagram and elastic curve shown in Fig. a and b, respectively,
Theorem 1 and 2 give
$\Delta_{B}=t_{B / A}=\left[\frac{1}{2}\left(\frac{72 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(12 \mathrm{ft})\right]\left[\frac{2}{3}(12 \mathrm{ft})\right]=\frac{3456 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \uparrow$
$\theta_{D / B}=\frac{1}{2}\left(-\frac{72 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(24 \mathrm{ft})=-\frac{864 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}=\frac{864 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I} \nabla$
$t_{C / B}=\left[\frac{1}{2}\left(-\frac{72 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(12 \mathrm{ft})\right]\left[\frac{1}{3}(12 \mathrm{ft})\right]=-\frac{1728 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}$
$t_{D / B}=\left[\frac{1}{2}\left(-\frac{72 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(24 \mathrm{ft})\right](12 \mathrm{ft})=-\frac{10368 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}$
Then,

$$
\begin{aligned}
& \Delta^{\prime}=2\left(\Delta_{B}-\left|t_{C / B}\right|=2\left(\frac{3456 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}-\frac{1728 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}\right)=\frac{3456 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}\right. \\
& \theta_{B R}=\frac{\Delta^{\prime}}{L_{B D}}=\frac{3456 \mathrm{k} \cdot \mathrm{ft}^{3} / E I}{24 \mathrm{ft}}=\frac{144 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I} \nabla \\
& \theta_{D}=\theta_{B R}+\theta_{D / B} \\
&+2 \theta_{D}=\frac{144 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}+\frac{864 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}=\frac{1008 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I} \nabla \\
& \Delta_{D}=\left|t_{D / B}\right|+\Delta^{\prime}-\Delta_{B} \\
&=\frac{10368 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}+\frac{3456 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}-\frac{3456 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \\
&=\frac{10,368 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \downarrow
\end{aligned}
$$

(a)

Ans.

Ans.

8-39. Determine the displacement at D and the slope at D. Assume A is a fixed support, B is a pin, and C is a roller. Use the conjugate-beam method.

The real beam and conjugate beam are shown in Fig. a and b, respectively. Referring to Fig. c,

$$
\begin{aligned}
C+\sum M_{B}=0 ; \quad & C_{y}^{\prime}(12 \mathrm{ft})-\left[\frac{1}{2}\left(\frac{72 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(12 \mathrm{ft})\right](16 \mathrm{ft}) \\
& =0 \\
C_{y}^{\prime} & =\frac{576 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}
\end{aligned}
$$

Referring to Fig. d,

$$
+\uparrow \sum F_{y}=0 ; \quad-V_{D}^{\prime}-\frac{1}{2}\left(\frac{72 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(12 \mathrm{ft})-\frac{576 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}=0
$$

$$
\theta_{D}=V_{D}^{\prime}=-\frac{1008 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}=\frac{1008 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}
$$

$$
C+\sum M_{C}=0 ; \quad M_{D}^{\prime}+\left[\frac{1}{2}\left(\frac{72 \mathrm{k} \cdot \mathrm{ft}}{E I}\right)(12 \mathrm{ft})\right](8 \mathrm{ft})+\left(\frac{576 \mathrm{k} \cdot \mathrm{ft}^{2}}{E I}\right)(12 \mathrm{ft})=0
$$

$$
M_{D}^{\prime}=\Delta_{D}=-\frac{10368 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I}=\frac{10,368 \mathrm{k} \cdot \mathrm{ft}^{3}}{E I} \downarrow
$$

(a)

(b)

Ans.

Ans.

(d)

